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We derive an elementary formula for Janossy densities for determinantal point
processes with a finite rank projection-type kernel. In particular, for b=2
polynomial ensembles of random matrices we show that the Janossy densities on
an interval I … R can be expressed in terms of the Christoffel–Darboux kernel
for the orthogonal polynomials on the complement of I.
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1. INTRODUCTION

We consider an ensemble of n particles on a measure space (X, m) with the
joint distribution density (with respect to the product measure mé n) given
by the formula

p(x1,..., xn)=constn ·det(fj(xk))j, k=1,..., n det(kj(xk))j, k=1,..., n . (1)

Here fk(x), kk(x), k=1,..., n, are some functions on X and constn is the
normalization constant

const−1n =F
Xn

det(fj(xk))j, k=1,..., n det(kj(xk))j, k=1,..., n D
j=1,..., n

m(dxj)

=n! det 1F
X
fi(x) kj(x) m(dx)2

i, j=1,..., n
(2)

where Xn=X×· · ·×X (n times). Ensembles of this form were introduced
in refs. 1 and 30. In the special cases when X=R, fi=ki=x i−1, and



X={z ¥ C | |z|=1}, fi=k̄i=z i−1, such ensembles were extensively studied
in Random Matrix Theory much earlier under the general name unitary
ensembles, see ref. 21 for details. An example of the form (1) which is
different from random matrix ensembles was considered in ref. 22.

Let us assume that we can biorthogonalize {fj}j=1,..., n and {kj}j=1,..., n
with respect to the pairing

Of, kP=F
X
f(x) k(x) m(dx).

In other words, suppose that we can find functions tk(x), gk(x), k=1,..., n
such that

tk ¥ Span(fj, j=1,..., n), gk ¥ Span(kj, j=1,..., n), Otk, gmP=dkm.

The families {tj} and {gj} are called biorthogonal bases in
Span(fj, j=1,..., n) and Span(kj, j=1,..., n) considered as subspaces in
L2(X, m). Then the distribution (1) can be rewritten as (1, 30)

pn(x1,..., xn)=
1
n!

det(K(xi, xj))i, j=1,..., n , (3)

with

K(x, y)=C
n

j=1
tj(x) gj(y). (4)

One of the particularly nice properties of the ensemble (1), (3) is that one
can explicitly calculate the correlation functions

rk(x1,..., xk) :=
n!

(n−k)!
F
Xn−k
p(x1,..., xk, xk+1,..., xn) m(dxk+1) · · ·m(dxn)

which still have a determinantal form with the same kernel K(x, y):

rk(x1,..., xk)=det(K(xi, xj))i, j=1,..., k. (5)

If m is supported by a discrete set of points then the probabilistic
meaning of the k-point correlation function is that of the probability to
find a particle at each of k sites x1, x2,..., xk. In other words,

rk(x1, x2,..., xk) m(x1) · · ·m(xk)

=Pr{there is a particle at each of the points xi, i=1,..., k}.
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Analogously, if X … R and m is absolutely continuous with respect to the
Lebesgue measure then

rk(x1, x2,..., xk) m(dx1) · · ·m(dxk)

=Pr{there is a particle in each infinitesimal interval (xi, xi+dxi)}.

In general, random point processes with the k-point correlation func-
tions of the determinantal form (5) are called determinantal or fermion (see
e.g., ref. 27).

So-called Janossy densities Jk, I(x1,..., xk), k=0, 1, 2,..., describe the
distribution of the particles in a subset I of X. If X … R and m is absolutely
continuous with respect to the Lebesgue measure then

Jk, I(x1,..., xk) m(dx1) · · ·m(dxk)

=Pr{there are exactly k particles in I, one in each of the k infinitesimal

intervals (xi, xi+dxi)}.

If m is discrete then

Jk, I(x1,..., xk) m(x1) · · ·m(xk)

=Pr{there are exactly k particles in I, one at each of the k points xi}.

See ref. 12 for details.
For determinantal point processes Janossy densities also have a

determinantal form (see ref. 12, p.140 or ref. 4, Section 2):

Jk, I(x1,..., xk)=const(I) ·det(LI(xi, xj))i, j=1,..., k , (6)

where

LI=KI(Id−KI)−1. (7)

Here the kernel of KI is the restriction of the kernel K(x, y) to I:
KI(x, y)=qI(x) K(x, y) qI(y), where qI( · ) is the characteristic function
of I, and const(I) is the Fredholm determinant

const(I)=det(Id−KI)=det(Id+LI)−1.
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The main result of this paper is

Theorem 1. Let t̃j, j=1,..., n and g̃j, j=1,..., n be biorthonormal
bases in Span{fj, j=1,..., n} and Span{kj, j=1,..., n} considered as sub-
spaces of L2(X0I, m):

t̃k ¥ Span(fj, j=1,..., n), g̃k ¥ Span(kj, j=1,..., n),

F
X0I
t̃k(x) g̃m(x) m(dx)=dkm .

Then the kernel of LI=KI(Id−KI)−1 is equal to

LI(x, y)=C
n

j=1
t̃j(x) g̃j(y). (8)

The above result readily applies to the so-called b=2 polynomial
ensembles. Such ensembles arise, in particular, in random matrix
theory, (10, 21) directed percolation and tiling models, (18–20) and representation
theory. (4–6) The definition is as follows.

Assume that X is a subset of R and take

p(x1,..., xn)=constn · D
1 [ j < k [ n

(xj−xk)2. (9)

(Recall that this formula gives the joint distribution density with respect to
m(dx1) · · ·m(dxn).)

This is a special case of (1) with fj(x)=kj(x)=x j−1, j=1,..., n. Then
we have tj=gj=pj−1, where {pj(x)} are normalized orthogonal poly-
nomials on (X, m(dx)), and deg(pj)=j. The kernel K(x, y) is the nth
Christoffel–Darboux kernel

Kn(x, y)=C
n−1

j=0
pj(x) pj(y)=

kn−1
kn

pn(x) pn−1(y)−pn(y) pn−1(x)
x−y

,

where kj is the coefficient of x j in pj(x). It should be noted that the kernel
K depends on n, but in what follows we will usually omit the subscript n
unless this may lead to a confusion.

Clearly, in the case of the polynomial ensemble (9), Theorem 1 states
that the kernel of LI=KI(1−KI)−1 is the nth Christoffel–Darboux kernel
computed for the measure m restricted to X0I. That is,

LI(x, y)=C
n−1

j=0
p̃j(x) p̃j(y)=

k̃n−1
k̃n

p̃n(x) p̃n−1(y)− p̃n(y) p̃n−1(x)
x−y

,
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where

p̃j(x)=k̃jx j+{lower order terms}, F
X0I
p̃k(x) p̃m(x) m(dx)=dkm.

One of the particulary nice properties of the Janossy densities is that
for any interval (or, more generally, a measurable set) I and non-negative
integer k one has

Pr(there are exactly k particles in I)

=
1
k!

F
Ik
Jk, I(x1,..., xk) m(dx1) · · ·m(dxk)

The Janossy densities can be particularly useful in calculating the distribu-
tion of the left-most (right-most) particles when the particle space X is a
subset of the real line. Indeed, let us denote by l1 [ l2 [ · · ·[ ln the loca-
tions of the particles in the increasing order. Then it is easy to see that

Pr(lk ¥ (s, s+ds))

=1 1
(k−1)!

F
(−., s)k−1

Jk, (−., s)(x1,..., xk−1, s) m(dx1) · · ·m(dxk−1)2 m(ds)

=Pr(l1 \ s)
1

(k−1)!
F
(−., s)k−1

det(L(−., s)(xi, xj))i, j=1,..., k

×m(dx1) · · ·m(dxk−1) m(ds) (10)

Pr(l1 \ s)

=(det(Id+L(−., s)))−1=det(Id−K(−., s)),

(where in (10) we put xk=s).
This observation and the Theorem above allow us to compute expli-

citly the distribution functions of the left-most particles in the hard-edge
scaling limit of random matrix models when the parameter (charge at the
edge) is equal to zero. We refer to Section 4 below for the details.

The result of Theorem 1 was initially discovered in the case of poly-
nomial ensembles using the techniques of Riemann–Hilbert problems.
Later on, it was realized that Theorem 1 has a simpler linear algebraic
proof. However, since the main idea of the ‘‘Riemann–Hilbert’’ computa-
tion is very useful in deriving Painlevé equations for the distribution of the
left- or right-most particles in determinantal point processes, see refs. 2, 3,
and 7, we decided to include the argument into this paper; it can be found
in Section 2. Section 3 contains the simpler proof. Concluding remarks are
given in Section 5.
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To conclude the Introduction, let us note that Theorem 1 has a
counterpart for the so-called pfaffian ensembles. (The b=1 and 4 (or
‘‘orthogonal’’ and ‘‘symplectic’’) random matrix ensembles are the most
known examples of the pfaffian ensembles.) See the companion paper (28)

for details.

2. RIEMANN–HILBERT PROBLEM

In this section we will briefly describe two applications of the Riemann–
Hilbert problem (to computing orthogonal polynomials and to inverting
integrable integral operators) and use them to derive Theorem 1 in the case
of polynomials ensembles. Since we use the Riemann–Hilbert problem
(RHP, for short) mainly for instructional purposes, we avoid the discussion
of any technical issues involved.

Let S be an oriented contour in C. We agree that when we go along
the contour in the direction of orientation, the positive side lies to the left
and the negative side lies to the right. Let v be a map from S to GL(l, C),
where l=1, 2,... . We say that an l× l matrix function m=m(z) is a solu-
tion of the RHP (S, v) if (9, 10)

(i) m(z) is analytic in C0S, (11)

(ii) m+(z)=m−(z) v(z), z ¥ S. (12)

Here m+(z), m−(z) stand for the limiting values of m(z) as z approaches S
from the positive (negative) side. If, in addition, m(z)Q Id as zQ. then
we say that m(z) solves the normalized RHP (S, v). The matrix v is usually
called the jump matrix for the RHP.

First we describe the connection of RHP to orthogonal polynomials,
see refs. 14 and 15. Let dm(x)=w(x) dx be an absolutely continuous
measure on the real line, such that the non-negative density w decays at
infinity sufficiently fast (in particular, all moments exist). Consider an RHP
on R oriented from left to right with the jump matrix

v(z)=R1 w(z)
0 1
S . (13)

Fix a non-negative integer n. We are looking for a solution of the RHP
(R, v) satisfying

m(z)=(Id+O(z−1)) Rz
n 0
0 z−n
S , zQ..
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It appears that this RHP has a unique solution given by

m(z)=R pn(z) (C(wpn))(z)
cn−1pn−1(z) cn−1(C(wpn−1))(z)

S , z ¨ R, (14)

where pn(z)=zn+·· · is the nth monic orthogonal polynomial correspond-
ing to the weight function w(x),

(Ch)(z)=
1
2pi

F
R

h(t)
t−z

dt

is the Cauchy transform, cn=−2pik
2
n, and kn is the leading coefficient of

the nth orthonormal polynomial pn, i.e., pn(z)=knpn(z). Thus, computing
the orthogonal polynomials with the weight w(z) is equivalent to solving
RHP of the form above.

Now let us explain the relation of RHP to integrable operators. Let I
be a subset of R (typically, a disjoint union of finitely many intervals). We
recall that an integral operator M in L2(I, dx) with the kernel M(x, y) is
called integrable (11, 23, 24) if

M(x, y)=
; l
i=1 fi(x) gi(y)
x−y

(15)

for some l=2, 3,... and some functions fi, gi on I. We assume that
; l
i=1 fi(x) gi(x)=0 so that the kernel has no singularity on the diagonal.

In particular, the formula for the Christoffel–Darboux kernel in the
case of polynomial ensembles discussed in Section 1 means that the opera-
tors K and KI can be viewed as integrable operators in L2(R, dx) and
L2(I, dx) with l=2, and we may take

f1(x)=
1
2pikn

pn(x)`w(x), f2(x)=−kn−1 pn−1(x)`w(x), (16)

g1(x)=2pikn−1 pn−1(x)`w(x), g2(x)=
1
kn
pn(x)`w(x). (17)

The appearance of`w(x) has to do with the fact that we consider the
Lebesgue measure rather than m(dx) as our reference measure for the
L2-space.

It turns out that if the operator Id−M is invertible then the resolvent
R=M(Id−M)−1 is also an integrable operator and
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R(x, y)=
; l
i=1 Fi(x) Gi(y)
x−y

, (18)

Fi=(Id−M)−1fi, Gi=(Id−M t)−1gi, i=1, 2,..., l, (19)

see refs. 11, 23, and 24 for a very nice exposition. Furthermore, the func-
tions Fi and Gi can be obtained through solving a RHP as follows. Let vŒ
be an l× l matrix valued function on I given by

vŒ=Id−2pifg t, f=(f1,..., fl) t, g=(g1,..., gl) t. (20)

One can prove (11, 23, 24) that the normalized RHP (I, vŒ) has a unique solu-
tion mŒ(z), and

F=(F1,..., Fl) t=(mŒ)± f, (21)

G=(G1,..., Gl) t=(mŒ)
−t
± g. (22)

The following observation is crucial.

Lemma 1. Let m be the solution (14) of the RHP (R, v) and let mŒ
be the solution of the normalized RHP (I, vŒ) with vŒ given by (16), (17),
and (20). Then M=mŒm solves the RHP (R0I, v) with the asymptotics
diag(zn, z−n) as zQ., and hence

M(z)=R p̃n(z) (C(wqR0Ip̃n))(z)
c̃n−1p̃n−1(z) c̃n−1(C(wqR0Ip̃n−1))(z)

S , z ¨ R0I, (23)

where ’ signifies that the corresponding polynomials are orthogonal on
R0I with respect to the same weight function w.

The proof of this lemma is based on Lemma 4.3 of ref. 7 (see also
Lemma 2.4 of ref. 2 for a discrete analog). The analog of Lemma 1 for
weight functions with discrete support was one of the basic tools used in
ref. 3.

Proof. A straightforward calculation shows that on I we have
vŒ=m+v−1m

−1
+=m−v

−1m−1− . Thus on I

M−1
− M+=m

−1
− (m

−

−)
−1 m −+m+=m

−1
− vŒm+=v

−1m−1− m+=Id.

On the other hand, since mŒ(z) is holomorphic away from I and tends to Id
as zQ., it is clear that on R0I,M(z) satisfies the same jump condition as
m(z), and that it also has the same asymptotics as m(z) when zQ.. L
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Proof of Theorem 1. We apply the formalism described above to
the Christoffel–Darboux kernel with fi, gi specialized by (16) and (17)
above. As before, we will use the notation p̃k, p̃k for the kth orthonormal
and monic orthogonal polynomials corresponding to the weight w on R0I,
and we also denote

qk=C(wpk), q̃k=C(wqR0Ip̃k).

In the calculations below we use the identity det m(z) — detM(z) — 1.
Indeed, Liouville’s theorem readily implies that if the jump matrix of a
RHP has determinant 1 and the determinant of the asymptotics of a solu-
tion at infinity is also equal to 1, then the determinant of any solution of
this RHP (having the corresponding asymptotics at infinity) must equal 1
identically.

We have

F1=(mŒf)1=(Mm−1)11f1+(Mm−1)12f2

=M11m22f1−M12m21f1−M11m12f2+M12m11f2

=
kn−1
knk̃n

(−kn−1p̃nqn−1 pn+k̃n q̃n pn−1 pn+kn−1p̃nqn pn−1−k̃n q̃n pn pn−1)`w

=
k2n−1
kn k̃n

(qn pn−1−qn−1 pn) p̃n `w=
1

2pik̃n
det(m) p̃n `w=

1

2pik̃n
p̃n `w.

Similar calculations yield

G1=2pik̃n−1p̃n−1 `w, F2=−k̃n−1p̃n−1 `w, G2=
1

k̃n
p̃n `w.

Hence, the kernel of LI=KI(Id−KI)−1 equals

LI(x, y)=
F1(x) G1(y)+F2(x) G2(y)

x−y

=
k̃n−1
k̃n

p̃n(x)p̃n−1(y)− p̃n(y)p̃n−1(x)
x−y

`w(x) w(y).

Recall that the factor`w(x) w(y) is due to the fact that we are working in
L2(I, dx) rather than L2(I, w(x) dx). The proof of Theorem 1 for poly-
nomial ensembles is complete. L
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3. LINEAR ALGEBRAIC PROOF

We use the notation of Section 1. Consider the integral operators KI
and LI in L2(I, m) with the kernels

Kn(x, y)=C
n

j=1
tj(x) gj(y) (24)

and

LI(x, y)=C
n

j=1
t̃j(x) g̃j(y). (25)

Both operators are finite-dimensional:

Ran(KI)=Ran(LI)=H1 :=Span(fj)=Span(tj)=Span(t̃j),

Ker(KI)=Ker(LI)=H +
2 , H2 :=Span(kj)=Span(gj)=Span(g̃j),

where the index j ranges over {1,..., n}, and the subspaces are taken inside
L2(I, m). Therefore, in order to prove that LI=KI(Id−KI)−1, it is enough
to prove this relation for the restrictions of KI and LI to the n-dimensional
space H1. To this end we compute the matrices of the restrictions of the
operators KI, LI to H1 in the basis {tj}j=1,..., n.

Let us denote by GI and GX0I the n×n matrices with entries

(GI)jk=F
I
tj(x) gk(x) m(dx),

(GX0I)jk=F
X0I
tj(x) gk(x) m(dx)

j, k=1,..., n.

Since {tj}, {gk} are biorthonormal on X, we have GI+GX0I=Id. The
matrix of KI on H1 in the basis {tj} is given by GI. To calculate the matrix
of the restriction of LI on H1 we biorthonormalize the functions tj, gj,
j=1,..., n, in L2(X0I, m). This gives (cf. Proposition 2.2 in ref. 1)

C
n

j=1
t̃j(x) g̃j(y)= C

n

j, k=1
tj(x) gk(y)(GX0I)

−1
kj

= C
n

j, k=1
tj(x) gk(y)(Id−GI)

−1
kj . (26)

It immediately follows from (25) that the matrix of the restriction of LI to
H1 in the basis {tj} is equal to GI(Id−GI)−1. The proof is complete.
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4. HARD EDGE WITH ZERO CHARGE

In a few special cases, the polynomials orthogonal with respect to w
on X0I can be easily expressed in terms of the orthogonal polynomials
on X. We consider the Laguerre ensemble of positive definite matrices as
an example.

Every positive definite n×n matrixM can be written (in a non-unique
way) as M=AAg, where A is an n×n matrix with complex entries and Ag

is the adjoint matrix. The probability measure in the Laguerre ensemble
(also called Wishart ensemble in statistics) is defined as: (8)

P(dM)=Z−1n exp(−Tr(AAg)) det(AAg)a dA, (27)

where dA is the Lebesgue measure on the 2n2-dimensional space of n×n
complex matrices, Z−1n is a normalization constant, and a > −1. The joint
probability density of the distribution of the eigenvalues of M=AAg is
equal to

p(x1,..., xn)=constn D
1 [ i < j [ n

(xi−xj)2 D
n

j=1
xaj e

−xj,

xj ¥ (0,+.), j=1,..., n. (28)

The polynomials orthogonal with the weight w(x)=xae−x on
R+=(0,+.) are the classical Laguerre polynomials (see, e.g., ref. 13). In
the special case of a=0 and I=(0, t), the orthogonal polynomials on
X0I=R+0(0, t)=[t,+.) are obtained from the Laguerre polynomials
by the simple shift of variable xW x−t, i.e., p̃j(x)=pj(x−t), j=0, 1,... .
Thus, by Theorem 1, the kernel of LLag(n)I =KLag(n)I (Id−KLag(n)I )−1 is equal
to

LLag(n)I (x, y)=KLag(n)(x−t, y−t), (29)

where KLag(n)(x, y) is the order n Christoffel–Darboux kernel for Laguerre
polynomials with a=0.

It is well known, see refs. 16, 25, and 29, that when n becomes large,
the smallest eigenvalues in the Laguerre ensemble are of order n−1. More-
over, if we rescale all the eigenvalues of the nth Laguerre ensemble by n−1

then there exists a scaling limit as nQ. of all the correlation functions.
(In the random matrix theory this procedure is usually referred to as ‘‘hard
edge scaling limit.’’) The limit correlation functions also have the determi-
nantal form (5) with the so-called Bessel kernel:
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lim
nQ.
n−krLag(a, n)k
1x1
n
,...,
xk
n
2=det(K (a)(xi, xj))i, j=1,..., k,

K (a)(x, y)=
Ja(2`x)`y J

−

a(2`y)−Ja(2`y)`x J
−

a(2`x)
x−y

=F
1

0
Ja+1(2`yx) Ja+1(2`yy) dy

= C
.

k, l=0

(−1)k xk+a/2

k! C(a+k+1)
(−1) l y l+a/2

l! C(a+l+1)
1

a+k+l+1
.

Here Jn( · ) is the J-Bessel function, see, e.g., ref. 13. Note that if a=0 then
the above formula makes sense for any x, y ¥ C.

Proposition 1. For any s > 0, let K (0)s be the (bounded) integral
operator in L2((0, s), dx) defined by the restriction of the Bessel kernel
K (a)(x, y) with a=0 to (0, s)×(0, s). Then the operator K (0)s (1−K

(0)
s )

−1 is
bounded and has a kernel which is equal to K (0)(x−s, y−s).

Proof. The relation (29) implies

KLag(n)(x, y)=KLag(n)(x−t, y−t)−F
t

0
KLag(n)(x−t, u−t) KLag(n)(u, y) du,

x, y ¥ (0, t). (30)

Since n−1KLag(n)(xn−1, yn−1) tends to K (0)(x, y) as nQ. uniformly on
compact subsets of C (this follows, e.g., from the proof of Theorem 4.5 in
ref. 1), taking the scaling limit in (30) yields

K (0)(x, y)=K (0)(x−s, y−s)−F
s

0
K (0)(x−s, u−s) K (0)(u, y) du,

x, y ¥ (0, s). (31)

Denote by L (0)s the operator in L2((0, s), dx) with the kernel
L (0)s (x, y)=K

(0)(x−s, y−s). Since the kernel of this operator is the
uniform limit of the kernels of the nonnegative operators LLag(n)I =
KLag(n)(x−t, y−t), we have L (0)s \ 0, and hence −1 does not belong
to the spectrum of L (0)s . Thus, (31) can be rewritten in the form
K (0)s =L

(0)
s (Id+L (0)s )

−1, and this is equivalent to the statement of the
proposition. L
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Corollary 1. Let l (n)1 [ l (n)2 [ · · · [ l (n)n be the ordered eigenvalues of
the Laguerre ensemble (28) with a=0. Then

Pr 1l (n)1 \
s
n
2=e−s, (32)

lim
nQ.

Pr 1l (n)k+1 \
s
n
2=e−s F

(−s, 0)k
det(K (0)(xi, xj))i, j=1,..., k dx1 · · · dxk, k \ 2.

(33)
In particular,

lim
nQ.

Pr 1l (n)2 \
s
n
2=e

−s

2
F
2`s

0

x(I20(x)−I
2
1(x)) dx, (34)

where In( · ) is the I-Bessel function.

The formula (32) was first observed in ref. 16. The limiting distribution
(34) of the second smallest eigenvalue was computed in refs. 17 and 29.3

3 Note that the integral (34) can be evaluated in terms of Bessel functions, see, e.g., (2.30) in
ref. 29.

Further results in this direction, including formulas similar to (33) can be
found in ref. 32.

Proof. The relation (32) is easy:

Pr 1l (n)1 \
s
n
2=>(s/n,+.)n <i < j (xi−xj)2<j e−xj dxj

>(0,+.)n <i < j (xi−xj)2<j e−xj dxj

=
>(0,+.)n <i < j (xi−xj)2<j e−xj −s/n dxj
>(0,+.)n <i < j (xi−xj)2<j e−xj dxj

=e−s.

The relation (33) follows from (10) applied to the Laguerre ensemble and
the uniform convergence of kernels mentioned in the proof of the proposi-
tion above. Finally, using the L’Hôpital rule we obtain

F
s

0
K(0)(−x, −x) dx

=F
s

0

1(J −0(2i`x))2−
J0(2i`x) J

−

0(2i`x)

2i`x
−J0(2i`x) J

'

0 (2i`x)2 dx.

The formulas

J −0(z)=−J1(z), J'0 (z)=z
−1J1(z)−J0(z),

I0(z)=J0(iz), I1(z)=−iJ1(iz),
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see ref. 13, and the change of variable xW x2/2 bring the last integral to
the form (34). L

Of course, if l1 < l2 < · · · are the ordered particles of the determinan-
tal point process with the correlation functions given by the Bessel kernel
with a=0 then the right–hand sides of (32) and (33) are equal to Pr(l1 \ s)
and Pr(lk+1 \ s), respectively.

The calculations similar to those above can be done for the Jacobi
ensemble corresponding to w(x)=(1−x)a (1+x)b, x ¥ (−1, 1), in the
special cases I=(t, 1), a=0; I=(−1, t), b=0. After appropriate rescaling
one again obtains the limit relations of the form (32), (33), (34).

5. CONCLUDING REMARKS

Take two n-point ensembles with joint probability densities of the
form const · pn(x1,..., xn) with the same pn, but assume that these two
ensembles are supported by different sets—the first one lives on (X, m)
while the second one lives on (X0I, m), where I is a subset of X. Of course,
the normalization constants for these two ensembles will be different. The
kth Janossy density Jk, I(x1,..., xk) of the first ensemble is given by the
formula

Jk, I(x1,..., xk)=constŒ ·F
(X0I)n−k

pn(x1,..., xn) m(dxk+1) · · ·m(dxn),

x1,..., xk ¥ I,

while the kth correlation function r̃k(x1,..., xk) of the second ensemble
equals

r̃k(x1,..., xk)=constœ ·F
(X0I)n−k

pn(x1,..., xn) m(dxk+1) · · ·m(dxn),

x1,..., xk ¥X0I.

The only difference between the two formulas above is in the constant
prefactor and in the domain where x1,..., xk are allowed to vary. Clearly,
this suggests that there should be a direct relation between Jk, I and rk, and
in the case of determinantal ensembles such relation is provided by
Theorem 1.4

4 Note, however, that a simple comparison of the two formulas above does not give a proof of
Theorem 1 because these formulas only provide the symmetric minors of the corresponding
kernels.
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Since the argument above does not depend on the specific form of the
density pn, one might expect that Theorem 1 should have an analog for the
pfaffian ensembles (see, e.g., refs. 26, 30, and 31 for definitions). This is
exactly the case, and the corresponding result is presented in the compa-
nion paper. (28)

ACKNOWLEDGMENTS

Research of the first author was partially conducted during the period
A.B. served as a Clay Mathematics Institute Long-Term Prize Fellow.
Research by the second author was supported in part by the Sloan
Research Fellowship and the NSF Grant DMS-0103948.

REFERENCES

1. A. Borodin, Biorthogonal ensembles, Nucl. Phys. B 536:704–732 (1999).
2. A. Borodin, Discrete gap probabilities and discrete Painlevé equations, to appear in Duke
Math. J., available at arXiv:math-ph/0111008.

3. A. Borodin and D. Boyarchenko, Distribution of the first particle in discrete orthogonal
polynomial ensembles, to appear in Commun. Math. Phys., available at arXiv:math-ph/
0204001.

4. A. Borodin and G. Olshanski, Distributions on partitions, point processes, and the
hypergeometric kernel, Commun. Math. Phys. 211:335–358 (2000).

5. A. Borodin and G. Olshanski, Z-measures on partitions, Robinson–Schensted–Knuth
correspondence, and b=2 random matrix ensembles, random matrix models and their
applications, pp. 71–94, Math. Sci. Res. Inst. Publ., 40 (Cambridge Univ. Press,
Cambridge, 2001).

6. A. Borodin and G. Olshanski, Harmonic analysis on the infinite-dimensional unitary
group and determinantal point processes, to appear in Ann. Math., available at arXiv:
math.RT/0109194.

7. A. Borodin and P. Deift, Fredholm determinants, Jimbo–Miwa–Ueno y-functions and
representation theory, Commun. Pure Appl. Math. LV:1160–1230 (2002).

8. B. V. Bronk, Exponential ensembles for random matrices, J. Math. Phys. 6:228–237
(1965).

9. K. Clancey and I. Gohberg, Factorization of matrix functions and singular integral
operators, in Operator Theory 3 (Birkhäuser-Verlag, Basel, 1981).

10. P. Deift, Orthogonal polynomials and random matrices: A Riemann–Hilbert approach, in
Courant Lecture Notes in Mathematics, Vol. 3 (New York, 1999).

11. P. Deift, Integrable operators. Differential operators and spectral theory, in American
Mathematical Society Translations, Series 2, Vol. 189 (American Mathematical Society,
Providence, R.I., 1999), pp. 69–84.

12. D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes (Springer-
Verlag, New York, 1988).

13. A. Edelyi, Higher Transedental Functions, Vol. 2 (McGraw–Hill, New York 1953).
14. A. S. Fokas, A. R. Its, and A. V. Kitaev, An isomonodromy approach to the theory of

two-dimensional quantum gravity, Uspekhi Mat. Nauk. 45:135–136 (1990) [in Russian].
15. A. S. Fokas, A. R. Its, and A. V. Kitaev, Discrete Painlevé equations and their

appearance in quantum gravity, Commun. Math. Phys. 142:313–344 (1991).

Janossy Densities. I. Determinantal Ensembles 609



16. P. J. Forrester, The spectrum edge of random matrix ensembles, Nucl. Phys. B
402:709–728 (1993).

17. P. J. Forrester and T. D. Hughes, Complex Wishart matrices and conductance in meso-
scopic systems: Exact results, J. Math. Phys. 35:6736–6747 (1994).

18. K. Johansson, Shape fluctuations and random matrices, Comm. Math. Phys. 209:437–476
(2000).

19. K. Johansson, Discrete polynomial ensembles and the Plancherel measure, Ann. Math.
153:259–296 (2001).

20. K. Johansson, Non-intersecting paths, random tilings and random matrices, Probab.
Theory Related Fields 123:225–280 (2002).

21. M. L. Mehta, Random Matrices (Academic Press, New York, 1991).
22. K. A. Muttalib, Random matrix models with additional interactions, J. Phys. A 285:L159

(1995).
23. A. R. Its, A. G. Izergin, V. E. Korepin, and N. A. Slavnov, Differential equations for

quantum correlation functions, Int. J. Mod. Phys. B4:1003–1037 (1990).
24. A. R. Its, A. G. Izergin, V. E. Korepin, and N. A. Slavnov, The quantum correlation

function as the y function of classical differential equations, Important Developments in
Soliton Theory, A. S. Fokas and V. E. Zakharov, eds. (Springer-Verlag, Berlin, 1993),
pp. 407–417.

25. T. Nagao and M. Wadati, Eigenvalue distribution of random matrices at the spectrum
edge, J. Phys. Soc. Japan 62:3845–3856 (1993).

26. E. Rains, Correlation functions for symmetrized increasing subsequences, available at
arXiv:math.CO/0006097.

27. A. Soshnikov, Determinantal random point fields, Russian Math. Surveys 55:923–975
(2000).

28. A. Soshnikov, Janossy densities. II. Pfaffian ensembles, J. Stat. Phys. 113:611–622 (2003).
29. C. A. Tracy and H. Widom, Level-spacing distributions and the Bessel kernel, Commun.
Math. Phys. 161:289–309 (1994).

30. C. A. Tracy and H. Widom, Correlation functions, cluster functions, and spacing distri-
butions for random matrices, J. Stat. Phys. 92:809–835 (1998).

31. H. Widom, On the relation between orthogonal, symplectic, and unitary matrix
ensembles, J. Stat. Phys. 94:347–363 (1999).

32. W. Wieczorek, Distribution of the largest eigenvalues of the Levi–Smirnov ensemble,
available at arXiv:hep-ph/0209042.

610 Borodin and Soshnikov


	1. INTRODUCTION
	2. Riemann-Hilbert Problem
	3. LINEAR ALGEBRAIC PROOF
	4. HARD EDGE WITH ZERO CHARGE
	5. CONCLUDING REMARKS
	ACKNOWLEDGMENTS

